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Information on subcellular localization of proteins is important to molecular cell biology, proteomics, system biology and drug

discovery. To provide the vast majority of experimental scientists with a user-friendly tool in these areas, we present a package of

Web servers developed recently by hybridizing the ‘higher level’ approach with the ab initio approach. The package is called Cell-PLoc

and contains the following six predictors: Euk-mPLoc, Hum-mPLoc, Plant-PLoc, Gpos-PLoc, Gneg-PLoc and Virus-PLoc, specialized for

eukaryotic, human, plant, Gram-positive bacterial, Gram-negative bacterial and viral proteins, respectively. Using these Web servers,

one can easily get the desired prediction results with a high expected accuracy, as demonstrated by a series of cross-validation tests

on the benchmark data sets that covered up to 22 subcellular location sites and in which none of the proteins included had Z25%

sequence identity to any other protein in the same subcellular-location subset. Some of these Web servers can be particularly used to

deal with multiplex proteins as well, which may simultaneously exist at, or move between, two or more different subcellular

locations. Proteins with multiple locations or dynamic features of this kind are particularly interesting, because they may have some

special biological functions intriguing to investigators in both basic research and drug discovery. This protocol is a step-by-step guide

on how to use the Web-server predictors in the Cell-PLoc package. The computational time for each prediction is less than 5 s in most

cases. The Cell-PLoc package is freely accessible at http://chou.med.harvard.edu/bioinf/Cell-PLoc.

INTRODUCTION
Knowledge of the subcellular localization of proteins is important
because it can (i) provide useful insights about their functions,
(ii) indicate how and in what kind of cellular environments they
interact with each other and with other molecules and (iii) help in
understanding the intricate pathways that regulate biological
processes at the cellular level1,2.

Although the subcellular localization of a protein can be deter-
mined by conducting various biochemical experiments, the
approach by purely doing experiments is both time consuming
and costly. With the avalanche of gene products in the post-
genomic age, the gap between newly found protein sequences
and the knowledge of their subcellular localization is becoming
increasingly wide3. For instance, according to version 52.0 of the

Swiss-Prot database released on March 6, 2007, at http://www.ebi.
ac.uk/swissprot/, the number of total protein entries is 260,175.
After excluding those annotated as ‘fragment’ or containing less
than 50 amino-acid residues, the number is reduced to 247,262, out
of which 133,652 are with subcellular-location annotations (item 1
of Table 1). However, out of the 133,652 proteins, only 49,367 are
annotated with experimental observations (item 2 of Table 1) and
84,285 are annotated with uncertain labels such as ‘probable’,
‘potential’, ‘perhaps’ and ‘by similarity’ (item 3 of Table 1). A
similar gap also exists in the gene ontology (GO) database4, which
was established based on the molecular function, biological process
and cellular component. As shown in item 5 of Table 1, out of the
247,262 proteins, only 116,593 have GO annotations to indicate
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TABLE 1 | Breakdown of the 247,262a protein entries from Swiss-Prot database (version 52.0, released on March 6, 2007) according to the nature
of their subcellular location annotation and their expression in the GO database (released on March 6, 2007).

Item Description Number Percentage

1 Proteins with subcellular location annotations in Swiss-Prot database 133; 652
133; 652

247; 262
¼ 54:1%

2 Proteins in Item 1 with experimentally observed subcellular locations 49; 367
49; 367

247; 262
¼ 20:0%

3 Proteins in Item 1 with uncertain terms, such as ‘potential’, ‘probable’ and ‘by similarity’ 84; 285
84; 285

247; 262
¼ 34:1%

4 Proteins that can be represented in the GO space 226; 596
226; 596

247; 262
¼ 91:6%

5 Proteins with subcellular component annotations in the GO database 116; 593
116; 593

247; 262
¼ 47:2%

aThe original number of protein entries was 260,175, of which 12,913 were either annotated as ‘fragment’ or with less than 50 amino acid residues, and hence were removed for further consideration.
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their subcellular components. In other words, the percentage
(47.2%) of the protein entries with subcellular annotations in the
GO database is even lower than that (54.1%) in the Swiss-Prot
database. Moreover, it is instructive to point out that the GO
database was derived from other more basic databases including the
Swiss-Prot database. Therefore, the GO annotations might be
contaminated by the uncertain information from the 84,285 entries
as indicated in item 3 of Table 1 (see refs. 4–6).

For the timely use of these newly found proteins for basic
research and drug discovery7,8, it is highly desirable to develop an
automated method to bridge such a gap. During the past 15 years,
many efforts have been devoted to deal with such a challenge, and
significant progresses have been achieved in predicting the
subcellular localization of proteins6,9–45.

In spite of using many different advanced techniques, the
aforementioned methods can be basically categorized into two
strategies: the ab initio sequence-based approach and the ‘higher
level’ sequence-based approach.

The so-called ab initio approach is that the prediction is made
based on the sequence information alone, without using any
information derived from the higher level databases such as GO.
To develop a powerful method for predicting the subcellular
localization of a protein, one of the most important things is
how to represent the sample of a protein by a descriptor that not
only contains as much information as possible but also can be
handled by a powerful prediction engine. One of the typical
ab initio approaches is the sequential model in which the sample
of a protein is represented by its entire amino-acid sequence, and
the sequence similarity search-based tools like BLAST46 are used to
conduct prediction. However, this model fails to work when the
query protein does not have significant homology to proteins of
known location31,43,47. To deal with this problem, various discrete
models were developed in which the sample of a protein is
represented by a set of discrete numbers. The simplest discrete
model was based on the amino-acid (AA) composition or
AAC10,11,13,14,24. In the AAC discrete model, all the sequence-
order effects were missing. To avoid losing the sequence-order
information completely, the concept of pseudo amino-acid
(PseAA) composition or PseAAC was proposed48 that can reflect
the sequence-order information (at least partially) through a set of
correlation factors, and the prediction quality has been remarkably
improved48,49. The concept of PseAAC has also been used by many
others in improving the prediction quality for subcellular localiza-
tion of proteins and their other attributes25,42,45,50–60. Because
PseAAC has been widely used, for the convenience of users, a free
server called PseAAC (see ref. 61) has been established recently at
the website http://chou.med.harvard.edu/bioinf/PseAAC/. By using
this Web server, users can generate the PseAAC for any given
protein sequence by selecting the mode they want. For a systematic
introduction about the ab initio approach and its various models,
the readers are referred to a recent paper by Emanuelsson et al.43.
Although various ab initiomodels have their respective merits, all of
them have a common limit: the success rate is very low when the
query protein has less than 25% sequence identity to proteins of
known location, particularly when the number of subcellular
locations to be covered is greater than four or five35,40,62.

Here, we will focus on the six Web servers in the Cell-PLoc
package6 that were developed recently based on the ‘higher level’
sequence-based approach, or strictly speaking, a hybridization of

the ‘higher level’ and the ab initio sequence-based approaches.
These Web servers distinguish themselves by having the following
features. (i) User-friendly and quick to generate the result. By just
typing or copying and pasting the query protein sequence into the
input box, the user can generally get the desired result in less than
5 s. (ii) Wider coverage scope. In comparison with some popular
predictors such as PSORT12, TargetP18 and PSORT-B27 that cover
five or less subcellular locations, some predictors in the Cell-PLoc
package can cover up to 22 subcellular locations. (iii) Low pairwise
sequence identity benchmark data set. Compared with the data sets
constructed for many existing predictors that allow inclusion of
protein samples with 80% (see ref. 26), 90% (see ref. 13,31) or even
higher sequence identity, the benchmark data sets used to develop
these Web-server predictors in the Cell-PLoc package were strictly
complying with such a rule that none of the proteins included have
Z25% sequence identity to any other protein in the same
subcellular location subset. This is important for avoiding homo-
logy and redundancy bias, and particularly useful for dealing with
those proteins that do not have significant sequence homology to
any of the proteins of known location43,47. (iv) Higher expected
accuracy. Because these Web-server predictors were established by
hybridizing the ‘higher level’ GO approach with the state-of-the-art
ab initio sequence-based approach, the overall success rates of
prediction are generally significantly higher than those by the
best of the existing ab initio sequence-based approaches alone.
This kind of enhancement in the success rate is particularly more
remarkable when a query protein has less sequence similarity to
proteins of known location and when the coverage of prediction is
wider, that is, the number of subcellular locations to be covered is
greater. For instance, for the benchmark data set of human proteins
classified into 12 subcellular locations where none of the proteins
has Z25% sequence identity to any other protein within the same
subset, the overall jackknife cross-validation success rate by the
ab initio sequence-based approach based on the state-of-the-art
technique such as support vector machine (SVM)63 was lower than
40%, but that by the approach of hybridizing the ‘higher level and
ab initio approaches was about 81% (see ref. 35). For the bench-
mark data set of eukaryotic proteins classified into 16 subcellular
locations with the same threshold to exclude homologous
sequences, the overall jackknife success rate by the hybridization
approach was about 82%, which is also more than 40% higher than
those by various ab initio approaches40. (v) Ability to deal with
multiplex proteins. Some proteins may simultaneously exist at, or
move between, two or more subcellular locations. Proteins with
multiple locations or dynamic features of this kind are particularly
interesting because they may have some special biological functions
intriguing to investigators in both basic research and drug
discovery. Two of the Web servers in the current version of Cell-
PLoc package, Hum-mPLoc and Euk-mPLoc, can be used to deal
with biological systems containing both single-location and multi-
ple-location proteins. To the best of our knowledge, so far no other
Web server can do the same. (vi) Availability of large-scale
predicted results. To maximize the convenience of people working
in the relevant areas, we have used each of the six predictors to
identify all the protein entries (except those annotated with ‘frag-
ment’ or those with less than 50 amino acids) in the Swiss-Prot
database for the corresponding organism that do not have sub-
cellular location annotations or are annotated with uncertain terms
such as ‘probable’, ‘potential’, ‘likely’ or ‘by similarity’. We have
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deposited the large-scale results thus obtained into the relevant
downloadable files. To get these files, just follow the steps described
in the Procedure section below. These large-scale results can serve
the following two purposes: they can be directly used by those who
need the information immediately and they can set a preceding
mark to examine the accuracy of our predicted results by the future
experimental results.

The Cell-PLoc package was developed for predicting the
subcellular localization of proteins in various different organisms.
If one wishes to predict the signal peptide of a query protein, we
would recommend the use of SignalP64, PrediSi65 as well as Signal-
CF at http://chou.med.harvard.edu/bioinf/Signal-CF/ (see ref. 66)
and Signal-3L at http://chou.med.harvard.edu/bioinf/Signal-3L/
(see ref. 67) developed very recently.

The Web server predictors in the Cell-PLoc package have been
well recognized2,39,42,45,53,58–60,68–74. For example, Plant-PLoc62 was
published in 2007 and has already been used by Ho and Ng74 to
predict the subcellular locations of chitinases from Medicago sativa
and Galege orientalis.

What is the ‘higher level’ sequence-based approach?
A typical ‘higher level’ sequence-based approach is the one in which
a protein sample is defined in the GO4 space, as originally
introduced in ref. 75. According to the GO database, a protein
entry may correspond to several GO numbers. If each of the GO
numbers in the GO database is used to serve as a vector
basis, a protein entry can be defined as a high-dimensional vector
in the GO space by searching the GO database for the protein entry;
if a hit is found, then the corresponding vector component is
assigned 1, otherwise 0. Thus, the dimensions of a protein vector
will depend on the total GO numbers. For example, the GO
database released on May 30, 2006, contains 10,173 GO numbers
and, therefore, the protein entry will be defined in a 10,173-
dimensional space.

The reason for representing protein samples as described above
was based on the assumption that by this method proteins mapped
into the GO database space would be clustered in a way better
reflecting their subcellular locations. This enhances the success rate
of prediction for those proteins that do not have significant
sequence homology to proteins with known locations.

Besides the GO database, another higher level database is the
FunD (functional domain) database, which has been derived from
the integrated domain and motif database76 or InterPro database.
The FunD database consists of many sequences with well-known
functional domain types. If each of these sequences in the FunD
database is used to serve as a vector basis as originally proposed in
ref. 23, a protein entry can be defined as a high-dimensional vector
in the FunD space according to the following procedure: search the
FunD database for the protein sequence; if a hit is found, then the
corresponding vector component is assigned 1, otherwise 0. Thus,
the dimensions of a protein vector will depend on the total FunD
sequences. For example, the FunD database from the InterPro
release 6.2 (April 24, 2003) contains 7,785 entries that are available
from the website at http://www.ebi.ac.uk/interpro and, therefore,
the protein will be defined in a 7,785-dimensional space. The FunD
approach is very effective for predicting protein structural class, as
demonstrated in ref. 77.

Out of the above two ‘higher level’ sequence-based approaches,
the approach using the GO database has been extensively studied

for predicting the subcellular localization of proteins. Therefore, in
this protocol, we will focus on the GO approach.

Hybridization of the ‘higher level’ sequence-based approachwith
the ab initio sequence-based approach
A query protein entry may not have any corresponding GO number
at all and hence its representation in the GO space will be a
meaningless naught vector. This kind of situation may arise due
to the following two reasons: the GO database is not complete yet
or the query protein is a synthetic or a hypothetical one8. For the
former, the problem will become trivial or eventually be solved with
the continuous development of the GO database; but for the latter,
the problem will always exist. A similar situation can also occur for
the approach using FunD23. To cope with the naught vector
problem, we adopted the strategy by hybridizing the GO approach
with the ab initio approach, as described below.

Given a query protein entry, if any hit is found by searching the
GO database for the protein entry, its subcellular location will be
identified by the ‘higher level’ GO approach, otherwise, by the state-
of-the-art ab initio sequence-based approach. The flowchart given
in Figure 1 illustrates the process of the hybridization approach.

Because more than 90% protein entries in the Swiss-Prot
database have corresponding GO numbers, and the success rates
obtained by using the ‘higher level’ GO approach are overwhel-
mingly higher than those by the ab initio approaches, and also
because the ab initio predictor built in the hybridization approach is
at least comparable to the best of the existing ab initio methods, it is
conceivable that the overall success rate obtained by the hybridiza-
tion approach should be significantly higher than those by the
existing individual ab initio approaches.

The current Cell-PLoc package consists of six Web servers that
were established recently based on the hybridization approaches,
specialized on various organisms. The prediction engines in these
Web servers are featured with a powerful ensemble classifier formed
by fusing many individual basic classifiers, operated by either
KNN78 or OET-KNN79,80 algorithm. Each of these Web-server
predictors has been tested to yield a high overall jackknife success
rate on a very stringent benchmark data set in which none of the
proteins have Z25% sequence identity with any other in the same
subcellular location35,40,62.

Below, we will describe the equipment and input data needed
and give a step-by-step guide on how to use these Web servers.
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Query protein entry P

Search for GO number hits

Higher level
prediction engine

Ab initio
prediction engine

Final output

Yes No

Figure 1 | A flowchart to show the process of hybridizing the higher level GO

approach with the ab initio approach for predicting the subcellular

localization of a query protein.
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MATERIALS
EQUIPMENT SETUP
Hardware You need a computer with access to the Internet and a Web browser.
Data Your input protein sequences should be in FASTA format. You can either
copy and paste or type the sequence of a query protein into the input box. Spaces
and line breaks will be ignored and will not affect the predictions. The input
sequence can be either with or without an exact accession number. If the query
protein has an accession number, you should include its exact accession number
as part of the input, because this will reduce the computation time and generally
get a more accurate result; if no accession number is available, the prediction can
still be performed by using a dummy accession number as described in Step 6 of
the Procedure section below.

Programs The following predictors of the subcellular localization of proteins
will be described in this protocol:

Euk-mPLoc For predicting the subcellular localization of
eukaryotic proteins including those with multiple locations81; evolved
from Euk-PLoc40.
Hum-mPLoc For predicting the subcellular localization of human proteins
including those with multiple locations82; evolved from Hum-PLoc35.
Plant-Ploc For predicting the subcellular localization of plant proteins62.
Gpos-Ploc For predicting the subcellular localization of Gram-positive
bacterial proteins83.
Gneg-PLoc For predicting the subcellular localization of Gram-negative
bacterial proteins84.
Virus-PLoc For predicting the subcellular localization of viral proteins
within host and virus-infected cells44. See Table 2 for a summarization of the
above six Web servers and their websites.

PROCEDURE
1| Open the Web page http://chou.med.harvard.edu/bioinf/Cell-PLoc and you will see the top page of the Cell-PLoc package6

on your computer screen, as shown in Figure 2.

2| If you have (i) eukaryotic protein sequences, click on the Euk-mPLoc button; (ii) human protein sequences, click
Hum-mPLoc; (iii) plant sequences, click Plant-PLoc; (iv) Gram-positive bacterial protein sequences, click Gpos-PLoc;
(v) Gram-negative bacterial protein sequences, click Gneg-PLoc and (vi) viral protein sequences, click Virus-PLoc.

3| For the convenience of description, let us take Euk-mPLoc as an example. After clicking Euk-mPLoc, you will see the
top page of the Euk-mPLoc Web server (Fig. 3). To see the coverage scope, click the Read Me button and you will see the
current Euk-mPLoc version can cover the following 22 subcellular location sites: (i) acrosome, (ii) cell wall, (iii) centriole,
(iv) chloroplast, (v) cyanelle, (vi) cytoplasm, (vii) cytoskeleton, (viii) endoplasmic reticulum, (ix) endosome, (x) extracell,
(xi) Golgi apparatus, (xii) hydrogenosome, (xiii) lysosome, (xiv) melanosome, (xv) microsome, (xvi) mitochondrion,
(xvii) nucleus, (xviii) peroxisome, (xix) plasma membrane, (xx) spindle pole body, (xxi) synapse and (xxii) vacuole, as
illustrated by the schematic drawing in Figure 4. If you already know that the query protein is not eukaryotic or is
not localized in one of the above 22 locations, please stop
prediction because the result obtained will not make any
sense; otherwise, close the Read Me window and continue
the prediction.

4| Either type or copy and paste the query protein sequence
into the input box (depicted by the box at the center of
Fig. 3). The input sequence should be in FASTA format, as
shown by clicking on the Example button right above the
input box.
! CAUTION If the accession number entered does not repre-
sent the true input sequence, the result obtained may not
make any sense. Note that an accession number is a unique
identifier given to each protein sequence once it is submitted
to UniProtKB, which is composed of Swiss-Prot and TrEMBL
databases. The UniProtKB database (version 12.3 released on
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TABLE 2 | List of the Web servers and their Web addresses in the Cell-PLoc package that were developed recently for predicting subcellular locations
of proteins in various organisms.

Predictor name Website address Organism
Number of subcellular
locations to be covered

Euk-mPLoca http://chou.med.harvard.edu/bioinf/euk-multi/ Eukaryotic 22
Hum-mPLocb http://chou.med.harvard.edu/bioinf/hum-multi/ Human 14
Plant-PLoc http://chou.med.harvard.edu/bioinf/plant/ Plant 11
Gpos-PLoc http://chou.med.harvard.edu/bioinf/Gpos/ Gram-positive 5
Gneg-PLoc http://chou.med.harvard.edu/bioinf/Gneg/ Gram-negative 8
Virus-PLoc http://chou.med.harvard.edu/bioinf/virus/ Virus 7
aEvolved from Euk-PLoc40; Euk-mPLoc can be used to deal with proteins of multiple subcellular locations as well as single subcellular location. bEvolved from Hum-PLoc35; Hum-mPLoc can be used to deal with
proteins of multiple subcellular locations as well as single subcellular location.

Cell-PLoc: a package of Web servers for predicting subcellular
localization of proteins in different organisms

Figure 2 | Illustration to show the Cell-PLoc Web page at http://

chou.med.harvard.edu/bioinf/Cell-PLoc/.
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October 2, 2007) contains 5,217,756 protein sequences and
hence the same number of accession numbers as well.
Accession numbers are stable from release to release of the
databases.
m CRITICAL STEP For speeding up the computation and getting
a more accurate predicted result, that is, making the prediction
by the ‘higher level’ GO approach, it is important to enter the
exact accession number right above the protein sequence
according to the FASTA format.

5| Click on the Submit button to see the subcellular location
shown right under Predicted Result within a few seconds. For
instance, if you use the first sequence in the Example window
of Euk-mPLoc as an input, the input screen should look like
the illustration in Figure 5; after clicking the Submit button,
you will see both ‘Mitochondrion’ and ‘Nucleus’ shown on the
output screen (Fig. 6), indicating that the query protein may
exist in both the subcellular locations, fully in agreement
with the experimental observations85. However, if you
use the second sequence in the Example window as an
input, you will see ‘Lysosome’ shown on the output
screen, meaning that the query protein is localized only in the lysosome, also fully in agreement with the observation86.

6| In the case where true accession numbers are not available for some proteins, such as synthetic and hypothetical proteins8,
Euk-mPLoc can still be used to predict their subcellular locations based on their sequences alone. Under such a circumstance, to
make the prediction pass through the Web server, just add 4?????? as the dummy accession number right above the query
protein sequence, as shown in Figure 7. Thus, the prediction will be operated with the PseAAC approach, one of the state-of-
the-art ab initio approaches, just like the case when the accession number does not have any corresponding GO number
(see Fig. 1), and you will see the predicted result on the output screen as shown in Figure 8.

7| Click on the Citation button to find the relevant papers that document the detailed development and algorithm
of Euk-mPLoc.

8| Click on the Data button to find all the benchmark data sets used to train and test the Euk-mPLoc predictor.

9| Click on the Download button to download the results predicted by Euk-mPLoc for all the eukaryotic protein entries
(except those annotated with ‘fragment’ or those with less than 50 amino acids) in the Swiss-Prot database that do
not have subcellular location annotations or are annotated with uncertain terms such as ‘probable’, ‘potential’, ‘likely’

or ‘by similarity’. The large-scale predicted results have been
deposited in a downloadable file prepared in ‘Microsoft
Excel’ and ‘PDF’ formats. To download the former, click Tab Euk-
mPLoc.xls; to download the latter, click Tab Euk-mPLoc.pdf.
See Table 3 for a few examples taken from the large-scale
downloadable file. Note that the above large-scale results
predicted by Euk-mPLoc will be updated periodically to include
new entries of eukaryotic proteins and reflect the continuous
development of Euk-mPLoc.

10| For predicting the subcellular localization of proteins of
other organisms, and downloading their large-scale predicted
results and other relevant data and information, click the
corresponding Web server button (Fig. 2) as described in
Step 2 and follow Steps 3–9.

11| To support the plant genome-sequencing projects87,88,
we have categorized the large-scale predicted results for plant
proteins according to their species into the following 16
groups: (i) Arabidopsis, (ii) barley, (iii) Chlamydomonas,
(iv) liverwort, (v) maize, (vi) mesostigma, (vii) pea,
(viii) potato, (ix) rape, (x) rice, (xi) soybean, (xii) spinach,
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Figure 3 | An illustration to show the top page of the Web server Euk-mPLoc

at http://chou.med.harvard.edu/bioinf/euk-multi/. See the text and Table 2
for further explanation.

Acrosome

Chloroplast

Microsome

Cell wall

Mitochondrion

Centriole

Cyanelle

Endoplasmic
reticulum

Cytoskeleton 

Synapse

Endosome
VacuoleMelanosome

Plasma
membrane

Peroxisome

Lysosome
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Golgi
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Hydrogenosome

Spindle pole
body
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Figure 4 | A schematic illustration to show the various different components

or organelles in a eukaryotic cell. Reprinted from ref. 81 with permission.
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(xiii) tobacco, (xiv) tomato, (xv) wheat and (xvi) others. To download the results thus categorized, click Tab Plant-PLoc category.xls
in the Download window of Plant-PLoc.
! CAUTION For the six Web servers listed in Table 2, only Hum-mPLoc and Euk-mPLoc can be used to deal with both
single-location and multiple-location proteins. This is because, of the human proteins with experimental location annotations,
15% are those with multiple locations82; of the eukaryotic proteins with experimental location annotations, 8% are those with
multiple locations81. For the proteins in other organisms, so far such a percentage is still lower than 5%. However, as more
experimental data for multiple-location proteins in these organisms become available in the future, the Cell-PLoc package
will be periodically updated to deal with both single-location and multiple-location proteins in the other organisms as well.

� TIMING
The computational time for each prediction is within 5 s for most cases

? TROUBLESHOOTING
If the server does not accept the query protein input for computation, the trouble might be caused by one of the following
reasons:
(1) Input is not in the FASTA format.
(2) Input sequence is less than 50 amino acids and hence it might represent a fragment rather than a real protein.
(3) The input sequence contains invalid characters; the valid single-letter characters for a protein sequence
are ACDEFGHIKLMNPQRSTVWY.
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Figure 5 | A screenshot to show the input in FASTA format with the true

accession number.

Figure 6 | A screenshot to show the output predicted by the higher level GO

approach, where the predicted results are in purple.

Figure 7 | A screenshot to show the input in FASTA format with the dummy

accession number.

Figure 8 | A screenshot to show the output predicted by the ab initio PseAAC

approach, where the predicted results are in purple.
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(4) The accession number is invalid; the accession number of the query protein has to be checked carefully as defined in Step 4
of the Procedure section. If the query protein does not have a true accession number (e.g., for the case of synthetic or hypo-
thetical protein), just use the dummy accession number ‘4??????’ as shown in Figure 7. However, as mentioned above, predic-
tion by using a dummy accession number might yield less accurate result and take longer computation time.

Odd results/anomalies might also occur if the query protein is outside the subcellular locations covered by the Web-server
predictor.

ANTICIPATED RESULTS
In statistical prediction, the following three cross-validation methods are often used to examine a predictor for its effectiveness
in practical application: independent data set test, subsampling test and jackknife test. In the independent data set test,
although none of the proteins to be tested occurs in the training data set used to train the predictor, the selection of proteins
for the testing data set could be quite arbitrary unless it is sufficiently large. This kind of arbitrariness may directly affect the
conclusion. For instance, a predictor yielding higher success rate than the others for a testing data set might fail to yield so
when applied to another testing data set89. For the subsampling test, the practical procedure often used in literatures is the
fivefold, sevenfold or tenfold cross-validation. The problem with the subsampling examination as such is that the number of
possible selections in dividing a benchmark data set is an astronomical figure even for a very simple data set6. Therefore, any
practical result by the subsampling test alone represents one of many possible results, and hence cannot avoid the arbitrariness
either. In the jackknife cross-validation, each of the protein samples in the benchmark data set is in turn singled out as a
tested protein and the predictor is trained by the remaining proteins. During the jackknifing process, both training and testing
data sets are actually open, and a protein will in turn move from one to the other. The jackknife cross-validation can exclude
the memory effects during the entire testing process and, also, the result thus obtained is always unique for a given benchmark
data set. Therefore, of the above three examination methods, the jackknife test is deemed the most objective89, and has been
increasingly used by investigators to examine the accuracy of various predictors24,25,28,33,36,39,42,45,50–56,59,70,90–96.

However, even being tested by the jackknife cross-validation, the same predictor can still yield different success rates for
different benchmark data sets. Generally speaking, more stringent the threshold to exclude homologous sequences from a
benchmark data set, or larger the number of the subcellular locations it covers, lower the corresponding overall success rate
yielded. For instance, some ab initio predictors based on state-of-the-art techniques such as SVM could yield an overall success
rate of higher than 80% for a high homologous benchmark data set that contains proteins with pairwise sequence identity up to
90% and covers only four subcellular location sites. However, when tested by the low homologous benchmark data set that only
contains proteins with pairwise sequence identity lower than 25% and covers 16 subcellular location sites, these same predictors
could only yield an overall success rate of lower than 35% (see ref. 40).

On the other hand, for the predictors formed by hybridizing the ‘higher level’ and the ab initio approaches such as Euk-
PLoc40, Hum-PLoc35, Plant-PLoc62, Gpos-PLoc83, Gneg-PLoc84 and Virus-PLoc44, even when tested by the very stringent bench-
mark data sets that only contain protein samples with pairwise sequence identity lower than 25% and cover up to 16 subcellular
location sites, the overall jackknife success rates can still reach 71% to B87% (Table 4). Particularly, for the multiple-location
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TABLE 3 | Some examples from the large-scale downloadable file for the predicted results by the Euk-mPLoc for those eukaryotic proteins that
either have no subcellular location annotations in databanks or are annotated with uncertain terms such as ‘probable’,‘potential’ and ‘by similarity’
(reprinted from ref. 81 with permission).

Accession number Swiss-Prot code Annotation in Swiss-Prot database Identified location by Euk-mPLoc

Q8GY58 GUN23_ARATH Cell wall
Q80U87 UBP8_MOUSE Cytoplasm; nucleus
Q41853 RSH1_MAIZE Nucleus (probable) Nucleus
Q19958 STO2_CAEEL Endoplasmic reticulum; Golgi
Q9DCN1 NUD12_MOUSE Peroxisome (by similarity) Peroxisome
O99795 CYB_VARVV Mitochondrion
Q99PU7 BAP1_MOUSE Nucleus (by similarity) Cytoplasm; nucleus
Q08326 MSS4_RAT Endosome
Q9QZK8 DNS2A_RAT Lysosome (by similarity) Lysosome
P08144 AMYA_DROME Lysosome; secreted protein
Q17029 VATF_ANOGA Chloroplast; mitochondrion
Q8X1X3 G3P_PARBR Cytoplasm (by similarity) Peroxisome
Q9WTI7 MYO1C_MOUSE Cytoskeleton
Q9USS8 YNB2_SCHPO Centriole; cytoplasm
Q01771 STADS_BRANA Plastid; chloroplast (probable) Chloroplast
P07597 NLTP1_HORVU Cell wall; cytoplasm
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predictors, such as Euk-mPLoc81 and Hum-mPLoc82, when tested by the benchmark data sets with the same strict threshold to
exclude homologous proteins and covering up to 22 subcellular location sites, the overall jackknife success rates can still reach
67% to B70% (Table 4). As can be conceived, it is much more difficult to get a decent overall success rate for a benchmark
data set that also contains multiple-location proteins6. Moreover, besides Euk-mPLoc and Hum-PLoc, so far no other Web server
can be used to deal with both single-location and multiple-location proteins43.

Concluding remarks
With the explosion of newly found protein sequences entering into protein databanks in the post-genomic age, it is highly
desired to develop an automated method by which one can get a fast and often a reliable suggestion for the localization of an
uncharacterized protein. In comparison with many of the existing predictors that are based on the ab initio approach alone, the
Web servers can, by hybridizing the ‘high level’ and ab initio approaches as described in this article, yield much higher success
rates and cover much wider scope and hence are more powerful in practical applications. However, there is much room for
further improvement.

Although Plant-PLoc62 in the current version of Cell-PLoc package can cover 11 subcellular location sites of plant proteins,
which is much more than three or four location sites covered by TargetP18, if a query protein is outside of the 11 location sites,
the predicted result would still be meaningless. A similar limitation in the coverage scope also exists for the other Web-server
predictors in Cell-PLoc. In view of this, as more experimental subcellular location data become available, we will periodically
expand the coverage scope for the Web servers in the future version of Cell-PLoc.

Owing to the reasons described in Step 11 of the Procedure section, for the current version of Cell-PLoc, only two predictors
(Hum-mPLoc and Euk-mPLoc) can be used to deal with a biological system that contains both single-location and multiple-
location proteins. As more experimental multiple-location data become available for plant, Gram-positive bacterial, Gram-
negative bacterial and viral proteins, we will periodically convert Plant-PLoc, Gpos-PLoc, Gneg-PLoc and Virus-PLoc to
Plant-mPLoc, Gpos-mPLoc, Gneg-mPLoc and Virus-mPLoc, respectively, so as to enable these Web-server predictors in the future
version of Cell-PLoc to deal with multiplex proteins as well.

To enhance the prediction quality for those proteins that have no corresponding GO numbers or accession numbers (such as
synthetic and hypothetical proteins), we will continue to improve the prediction engine and protein descriptor, compare the
results obtained by different powerful ab initio predictors on various stringent benchmark data sets and periodically use the new
state-of-the-art ab initio approach to replace the current one in the future version of Cell-PLoc.

Once a future version of Cell-PLoc is established, we will make an announcement through a Web page or a publication.
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